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INTRODUCTION 

        Taking cues from population biology and the intuition expressed by Lightfoot (1991), Niyogi and 

Berwick (1995, 1997) introduced a formalized dynamical systems approach to the study of language 

change based on theories of language acquisition, and demonstrated how the behavior of an individual 

learner effects the emergence of characteristics on the global level. In particular, it was shown that any 

combination of grammatical theory, learning algorithm, and sentence distribution gives rise to a dynamical 

system which allows one to conduct linear stability analysis, generate phase plots, and discover chaotic 

regimes. This process is demonstrated using variants of the Triggering Learning Algorithm (TLA) 

proposed by Gibson and Wexler (1994). Niyogi (2002) extends the earlier work by adding analyses of two 

additional algorithms: the Batch-Error and Cue-Based (Lightfoot, 1999) learning algorithms, and shows 

how different choices of maturation time and sentence ambiguity, or maturation time and cue probability 

and threshold, generate a variety of dynamical maps. 

        However, this framework includes the following problematic assumptions: population sizes are 

infinite and learners receive input samples, or training data, from the entire population. These have served 

as the motivations for the present work that: 

1. Presents a simulation software package, ALingua1, which has been developed to model a 

more realistic situation: finite population sizes with networks2 defining the source of 

primary linguistic data (PLD). 

2. Explores the effects of the constraints of finite population size and local connection 

networks on the evolution of a two-language, discrete-time dynamical system. 

3. Considers the relationship between spatial distributions and the emergent behavior of the 

dynamical system. 

                                                
1 ALingua can be downloaded at http://alingua.finitestate.net. 
2 Each network is essentially a social network defining the agents with which a single language learner potentially has 
interactions, and in particular interactions in which the learner is presented with linguistic input. 
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        The results obtained by examining the behavior of the finite system within the stability regimes 

discovered in the infinite model suggest that the results from the infinite model serve as good 

approximations to the finite case when considering completely connected populations. However, when the 

source of PLD is constrained to within a small radius of the learner the qualitative dynamics, and in some 

cases the quantitative outcomes, of the system are affected. In addition, there are some situations in which 

a non-random initial distribution of agents also affects the behavior of the system. In the TLA-based 

simulations there is a decrease in the overall variability when the connection network is localized and an 

initial period of heightened stability when the initial distribution is non-random, but the long-term 

behavior is essentially unchanged. The Batch-Error simulations also reflect a variability reduction under a 

localized PLD source with the long-term behavior being dependent on the distribution of language 

speakers. Finally, the simulations based on the Cue-Based algorithm suggest reduced variability and also a 

dependence on the distribution of agents. However, the behavior of the Cue-Based model is significantly 

different than that observed with the TLA and Batch-Error algorithms. Contrary to the TLA and Batch-

Error models, the reduction in variability leads to a reduction, rather than an increase, in the long-term 

viability of the language under consideration and it is the distribution of the non-cue-driven language that 

affects the qualitative dynamics and quantitative outcome of the system. 

        In essence, the ALingua software and its accompanying model embody the last half-century of work 

in Computational Linguistics; from Chomsky’s pioneering work on Formal Languages in the 1950’s and 

Gold’s development of a Language Learnability criteria in the 1960’s, to the more recent work of the last 

decade in both Statistical Learning Theory and the application of Dynamical Systems Analysis to the 

study of language evolution. What follows immediately is a brief introduction to each of these topics. 

Next, a summary of the infinite model and the results from Niyogi (2002) are given. Then the particulars 
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of the finite model and the results obtained by examining its behavior are specified. Finally, the 

conclusions drawn from the present work are offered along with suggestions for further work. 

 

FORMAL LANGUAGE THEORY 1 

        The first step in defining language is the establishment of a finite alphabet of distinct symbols∑ . 

This alphabet can be any such set, for example the set {0,1,...,9} when considering decimal numbers, or 

the set of ASCII characters when considering digitized text. Many times it is useful to consider the binary 

alphabet {0, 1}2. A strings of length k , ks , is then simply a sequence constructed by concatenating k  

symbols from the chosen alphabet, and the set of all possible strings over the alphabet is denoted by 

*

0≥

∑ ∑=U
k

k

. Subsequently, a languageL is defined as a subset of all possible strings; that is *
∑⊆L . 

        In the natural language setting, one often considers the alphabet consisting of the set of all phonemes, 

or perhaps the set of words in a language, or vocabularyV , also known as the lexicon. A language can 

then be defined, for example, as a set of sentences constructed using words from the vocabulary, 

*

0>

⊆ =U
k

k

L V V . 

        It is then possible to construct a grammar G  for the (possibly infinite) languageL , such that L =G L , 

which is a finite3 collection of rewrite rules that define the set of well-formed expressions in the language. 

These rules are strings that contain terminals, or symbols from the alphabet∑ , and non-terminals that are 

variables that can be expanded to strings of terminals. Figure 1 shows an example of a very simple 

                                                
1The following conventions have been used in this section and those that follow:L is a language,G is a grammar,M is a Turing 

Machine,LG is the language generated by grammarG , and L( )M is the language accepted by Turing MachineM . 
2 In fact, any alphabet can be represented in the binary alphabet by a process of enumeration. 
3 It is the finite nature of grammars that is of most interest in the current context, as it seems reasonable to imagine that a 
language learner would hypothesize this structure rather than the possibly infinite set of sentences of the target language. 
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grammar that generates well-formed sentences1. In this grammar,S  is a special start or sentence symbol, 

the , , , , and      NP VP PP Noun Verb Prep symbols are non-terminals, and , , , andtime flies arrows like   are 

terminal symbols. It should be noted that while a grammar uniquely defines a language, there are 

potentially infinitely many grammars that can generate the same language. The trivial case would include 

grammars that have additional dummy rewrite rules that are a part of the grammar but are never accessed. 

        Finally, there are various classes of abstract machinesM that can be constructed that accept/parse the 

strings of a given languageL , where L( )=M L . The simplest of these, an example of which is shown in 

Figure 2, is the Finite State Automata (FSA). Formally, it is a 5-tuple 0( , , , , )δ∑     Q q F  where∑ is the input 

alphabet,Q is a finite set of states, 0 ∈q Q is the start state, ⊆F Q  is a set of final states, andδ is a 

transition function mapping states and input symbols to states, : xδ ∑ → QQ . Next is the Pushdown 

Automata (PDA) that is similar to the FSA but has access to a stack where it can store a potentially 

unbounded amount of information. A PDA is a 7-tuple 0( , , , , , , )δ∑ Γ      Q q F^  whereΓ is the stack 

alphabet, Γ ∈^  is the initial stack symbol,δ is a transition function mapping states, input symbols, and 

stack symbols to states and stack symbols, *: x x xδ ∑ Γ Γ    →   Q Q , and the remaining parameters have the 

same definitions as they do for the FSA. Last, the Turing Machine has access to a read/write tape2 and is a 

9-tuple 0( , , , , , , , , )δ∑ Γ        Q q t r� ò  whereΓ  is the tape alphabet containing ∑ as a subset, Γ − ∑ ∈�  is the left 

end marker, Γ − ∑ ∈ò  is the blank symbol, ∈t Q is the accept state, ∈r Q  is the reject state,δ is a 

                                                
1 Notice that this is a purely syntactic approach to language. That is, it is possible to generate well-formed sentences from this 
grammar that are not semantically correct or meaningful. For example, while it can produce the phrase, “time flies like arrows,” 
which describes the passing of time, since both “time” and “flies” can be either nouns or verbs, and “like” can be either a verb 
or a preposition, it is also possible to interpret the phrase as referring to a particular type of flies that enjoy arrows. Obviously, 
there are other possible meaningless semantic interpretations, as well. The canonical example of a well-formed sequence that is 
semantically ambiguous, attributable to Chomsky, is, “colorless, green ideas sleep furiously.” 
2 The standard Turing Machine has an infinite tape, but there are various well-known modifications to this construction. One 
particularly useful version is the Linear-Bounded Turing Machine which has a finite tape of lengthkn , wheren is the size of the 
input and k is a constant associated with the machine. 
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transition function mapping states and tape symbols to states, tape symbols and direction (i.e. left or right), 

: x x x { , }δ Γ Γ  →      Q Q L R , and the remaining parameters are defined as above. 

        It can be shown that there is an equivalence relationship between certain classes of languages, 

grammars, and machines, such thatL L( )GL M= = 1. Shown in Figure 3 is the hierarchy2 introduced by 

Chomsky (1956) that organizes these by increasing order of complexity. In addition, each successive 

language contains, as a proper subset, those below it. 

        Ever since the introduction of the hierarchy, there has been disagreement as to the placement of the 

set of natural languages within it. The set of grammatically well-formed sentences of English that are 

constructed using a center-embedding process can be shown to be non-regular, and so provides simple 

evidence suggesting thatLEnglish is not in the Type 3, or Regular category. First, construct the 

set embedS containing sentences of the form i iNP VP , e.g. “The boy yawned,” “The boy the man scolded 

yawned,” and so on. This set is demonstrably non-regular by application of the Pumping Lemma. That is, 

if we assume thatembedS is regular, then 0n∃ > such that for any string embeds xyz S= ∈ , wheres n> , it 

should also be the case that 0, with 0 andi
embedxy z S i y xy n∈  ∀ >    >   < . However, it is easy to see how any 

choice for sub-stringy leads to an ill-formed string, soembedS is not regular. Next, we observe 

that * *Lembed EnglishS NP VP= ∩  . The set * *NP VP  is regular, so if we assume thatL English  is 

regular embedS must also be regular (since regular languages are closed under intersection). However, we 

have shown thatembedS is not regular, so by contradiction we see that our assumption thatL English is regular 

was false. In fact, it is not uncommon to place the set of natural languages in the vicinity of the Type 2, or 

Context-Free category. An example of an argument to the contrary is presented in Kornai (1985) which 

                                                
1 See Hopcroft and Ullman (1979) or Kozen (1997) for proofs of these equivalences. 
2 This is now known simply as the Chomsky Hierarchy. 



 8

places natural language string sets in the Type 3, or Regular category. As will be shown later, the 

placement of natural languages within this hierarchy has implications to their learnability. 

 

LANGUAGE LEARNABILITY  

        Amazingly, children learn their native language through a process of inductive inference; each child 

is presented with primary linguistic data from a target language and from these a language is 

hypothesized. This feat is particularly impressive when considering that the learner is exposed to primarily 

positive examples and is never explicitly given the rules of production1. Furthermore, Brown and Hanlon 

(1970) discovered that learning proceeds with rare correction of ungrammatical utterances2 and equally 

likely fulfillment of both grammatical and ungrammatical requests. 

        Abstractly, we can consider a language learner to simply be an effective procedure, or algorithmA , 

that maps example sentences to a set of possible hypothesized grammarsH , which for the present 

purposes can be assumed to be equal toL , the set of natural languages. If a sequence of k sentences is 

denoted by 1 2( , ,..., ) ks s s , where *
is ∑∈ , we can define the set of all possible sequences of k  sentences 

*( )= ∑
k kD . Furthermore, if the set of all such finite sequences is

0

k

k

D
>

=UD ,A  is then the partial 

recursive function : →A D H . 

        Gold (1967) developed a framework for investigating language learnability - language identification 

in the limit. A language is defined as a set of strings over a finite alphabet and a text for a language is a 

sequence of strings (in any order) from the language such that each possible string of the language occurs 

                                                
1 It is interesting to note that these rules elude the teacher, as well. That is, there is never an explicit understanding of the 
underlying grammar. 
2 The exception to this generalization is untrue statements. 
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at least once. Within this context, a language is learnable if there exists a learning algorithm which, when 

presented with all texts of the language1, always correctly identifies/converges to the target. 

 

( )

    

 ,  L

 ∃  
∀   ∃  ∀ 

kt

A target language L is learnable if an algorithm  

s.t. texts  t for L, n s.t. k > n = L.

Definition 1

A

A
 

 

Additionally, Gold defines what it means for a class of languages to be learnable. 

 

.A class of languages is learnable if L L is learnable         ∀ ∈    Definition 2 L L  

 

        Gold discovered that the set of all finite languages is learnable from a text, but that super-finite sets2 

are not. In fact, under this framework, the entire Chomsky Hierarchy is unlearnable3. Some have 

incorrectly interpreted this result to imply that the set of natural languages is unlearnable. However, the 

correct interpretation is that the learnability of natural languages is dependent upon the set being 

constrained. More poignantly, the conclusion can be understood as evidence of the existence of the 

Universal Grammar (UG) proposed by Chomsky, or that the learner has some form of innate a priori 

knowledge that assists them in the language acquisition process. 

        Application of statistical learning theory (Vapnik, 1998) relaxes the perfect learning constraints of 

Gold and allows for a high probability of correct identification within an acceptable level of generalization 

error4, , providing a more plausible context for language acquisition. As a further distinction, sentences 

are drawn in i.i.d. fashion from a distribution that has support on the set of all languages; so, both positive 
                                                
1 Since texts for a language are fair, in the sense that they are constructed using only strings allowable in the language being 
considered, they contain only positive examples. 
2 A set containing all finite languages and at least one infinite language is known as a super-finite set. 
3 One might be tempted to think that the class of regular languages is learnable, however since this category contains all finite 
languages and also many infinite languages, it too is unlearnable. 
4 This is referred to as Probably Approximately Correct learning. 



 10

and negative examples are presented. In this framework, a language is learnable if, in the limit, the 

probability that the distance1 between the hypothesized and target languages is within the desired 

confidence interval goes to zero. 

 

( ). . 0, Pr [ (L , ) ] 0 ,n

A target language L is learnable if an algorithm 

s t  d L as n where n is the number

of  sample sentences and d is the distance between the hypothesized

and t

  ∃ 
 ∀  >  > →   → ∞   

 

Definition 3

A

A

.arget languages

 

 

A family of languages is then learnable in the same sense as above. Application of the Hoeffding bound 

yields an estimation of a finite number of sentences after whose presentation there is a high probability 

that the algorithm's guess is within an -approximation of the target. Interestingly, while this approach 

effectively extends the class of learnable languages, it ultimately affirms the same Gold-inspired 

conclusion that learnability necessitates a constrained set of hypothesis languages. 

 

LANGUAGE CHANGE  

        Language learning is decidedly imperfect. If it were not, languages would be transmitted from 

generation to generation without modification. This is clearly not the case. Is it reasonable to conjecture 

that faulty language acquisition, or misconvergence, could give rise to fluctuations in the linguistic 

composition of a population over time? 

        Consider what might give rise to change at the individual level. If both a grammatical theory and 

learning algorithm have been fixed, there are essentially two possibilities, both of which can be seen as 

                                                
1 If1 ( )Li

s is an indicator function defining membership of sentence *s ∑∈ in language iL andP is a probability distribution 

on *
∑ , then 1 2 1 2

1 ( ) 1 ( ) ( )( , ) L Ls s P sd L L ∑ − =  
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obvious consequences of the statistical learning context described above, where perfect convergence is 

unnecessary and in which the number of sample sentences is intimately linked to the probability that the 

learner is within the required -approximation of the target language. First, since the learner is being 

exposed to examples from the set of all languages1, it is entirely possible that the learner will subsequently 

fail to adequately approximate the target language, and may even converge to another, as the result of 

being exposed to too many positive examples from different languages. It also seems natural to draw an 

association between the Hoeffding bound on the number of sentences and the learner’s maturation time, or 

the time after which a grammatical hypothesis becomes solidified, and thus expose a second possible 

explanation for misconvergence. In particular, if a learner has reached maturation, yet has not been 

presented with a sufficient number of unambiguous2 sample sentences, the learner will have not acquired a 

language within the tolerable error level of the target. 

        Against this background of individual misconvergence, it is easy to see how changes would be 

reflected on the population level. Take the simplest possible case: a homogenous population, i.e. one in 

which everybody speaks the same language. Due to the inherent stochastic nature of the learning process, 

it is possible for members of a new generation of learners to hypothesize a language other than the target, 

and so there exists a non-zero probability that the linguistic composition of the population will change. If 

the members of a successive generation are then presented with input primarily from those who have 

earlier misconverged, they will either acquire this new language, or even a completely different one, once 

again due to the stochasticity in the system. It then becomes obvious how behavior at the individual level 

gives rise to global change. 

        However, if imperfect learning is in fact the source of variation, the disparity between the set of 

possible target languages and that actually acquired by the learner can not be too great otherwise there 

                                                
1 In this context, the possible sources of the negative examples are many, including exposure to foreign speakers (an individual 
or an entire population), non-native speakers, or even those with speech disorders. 
2 An unambiguous sentence is one that can only be parsed/generated by a single grammar in the hypothesis set. 
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would be a marked decrease in the linguistic coherence of the system1. On the contrary, there must be an 

allowance for a sufficient amount of error to account for the historically observed changes. So, we see that 

there is an intrinsic friction between language acquisition and language change, which predictably leads to 

questions regarding the exact nature of their relationship. 

 

THE INFINITE MODEL 

        Niyogi and Berwick (1995, 1997) show explicitly how the triple   G A( , , )P  of grammatical theory 

(e.g. parameterization), learning algorithm, and initial sentence distribution naturally gives rise to a 

dynamical system. Analysis of the system provides insight into explanations for how and why languages 

evolve along certain trajectories across generations. In particular, the framework fosters an understanding 

of how individual behavior leads to emergent, global characteristics. This work is then continued in 

Niyogi (2002) where the scope of considered learning algorithms is widened. 

        The model presented therein is infinite in size, with every member of the population being 

connected2 to each other, and embodies the simplest possible situation: a system of two 

languages,1 2andL L  3, in competition. It is predicated on a syntactic4 worldview, where languages are 

taken to be sets of well-formed sequences over a lexicon constructed from a shared underlying alphabet. 

In addition, the languages are not necessarily disjoint; it is possible for sentences to be ambiguous and 

belong to both1 2 andL L . That is, there may be sentences that can be parsed by both grammars. The 

population is also monolingual; each agent hypothesizes, and after maturation maintains, only a single 

grammar. Lastly, generations are coincident and discrete, with all new members of the population 

                                                
1 Nowak et al. (2001) cast this in terms of the evolution of a Universal Grammar and determine a coherence threshold which 
bounds the conditions under which grammatical communication can evolve. 
2 Since the population is completely connected, any member can present sample sentences. 
3 In a principles and parameters context, one could interpret these as two languages that differ with respect to a single binary-
valued parameter, e.g. Pro-Drop or Verb-Second( 2)V movement. 
4 This could easily be extended to a phonological context, where the lexicon is generated from a shared set of phonemes. 
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maturing and being added at the same time, and the location of each individual is static; there is no 

migratory movement in the system. 

        There are a handful of values that are then required to completely encapsulate the dynamical system. 

The proportion of 1L speakers is given byα , so at any time the state of the system can be described by tα , 

which is the proportion of1L speakers at timet (obviously, the proportion of2L speakers is1 tα− ). Also, the 

probability function 1P  gives the distribution of sentences over1L , while 2P  is the equivalent for sentences 

of 2L . Related to the probability functions, and of immense import, are the parameters [ ]1 1 2a P L L= ∩  

and [ ]2 2 1b P L L= ∩ which give the probability with which1L and 2L speakers produce ambiguous sentences, 

respectively1. The now familiar learning algorithmA defines a mapping from sample sentences to the set 

of possible languages, 1 2{ , }L L , andK  gives the number of sample sentences presented to the learner. 

        The first of the three analyzed algorithms is the Triggering Learning Algorithm (TLA) (Gibson and 

Wexler, 1994), a memory-less, gradient ascent learning process that manipulates a set of parameters2. A 

slightly modified version of this algorithm is used in this model since the class of hypothesis languages 

contains only two,1L and 2L . Initially, the learner chooses one of the possible languages at random. Upon 

receiving the first training datum, if the current hypothesized language correctly parses/generates the 

sample, it is retained and the next sample is processed. However, if the learner cannot successfully parse 

the sentence, they will change their hypothesis to the other language available in the system. Furthermore, 

the algorithm is not greedy. The sample sentence is never reanalyzed using the newly posited language; 

the flip is permanent and the next sample is analyzed accordingly. 

        The second algorithm considered is the Batch Error Learner. In contrast to the memory-less process 

of the TLA, the Batch Error procedure waits until all example sentences have been presented and then 
                                                
1 All of the probability distributions, once set, are maintained for the entire process. 
2 In the Principles and Parameters tradition, this would correspond to a set of binary-valued parameter settings that uniquely 
defines a language. 
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chooses the language that most reliably accounts for the observed data1. More specifically, the learner 

considers three subsets of their primary linguistic data: the unambiguous sentences of1 1 2( \ )L L L , the 

unambiguous sentences of2 2 1( \ )L L L , and the ambiguous sentences1 2( )L L∩ . If 1 2 3, , and n n n are the 

number of sentences in these sets, respectively, then the learner chooses1L if 1 2n n> , 2L if 2 1n n> , or 

either 1L or 2L with some fixed probability if1 2n n= 2. 

        The final algorithm included in the analysis is the Cue-Based Learner as described by Lightfoot 

(1999). Using this method, the learner analyzes the incoming data looking for cues; abstract structures 

derived from the sample sentences that are taken to be equivalent to the parameters accessed in the TLA 

model. Each language in the target class is uniquely defined by a set of cues that are found embedded3 in a 

subset of its unambiguous sentences, e.g. for1L  the set of cues1 1 2\C L L⊆ . A cue thresholdτ for the target 

language is then chosen, and if the proportion of cues in the set of sample sentences is greater than the 

threshold, the learner chooses the target. 

 

RESULTS FROM THE INFINITE MODEL 

        For the TLA learner, the derived difference equation for a fixed number of finite sample sentences is 

 

1

1
( )(1 )

2
K

t

B A B A B

A B
α +

+ − − −
=

+
, 

 

                                                
1 The actual algorithm employed by a real language learner most likely lies somewhere between the memory-less and batch 
error procedures. While the computational cost of the TLA is extremely low, it suffers by not having recourse to previous 
experience. As for the Batch Error learner, it has access to the entire history of training data, but at a high computational cost. 
2 In the present implementation, if1 2n n= the learner chooses1L with probability 1. 
3 This approach assumes that the cues are located in degree-0 matrix clauses, and thus not deeply embedded in an utterance. 
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where (1 )(1 )tA bα= − − and (1 )tB aα= − . Analysis of this equation yields a single stable fixed point in the 

closed interval[0,1]  to which the system converges given any set of initial conditions. Ifa b= the stable 

fixed point occurs at
1

2tα = . If a b> stability occurs rather close to 0α = and most of the population 

speaks 2L . Otherwise, the stable point of the system is close to 1α = and the system will contain1L speakers 

almost exclusively. If the number of sample sentences approaches∞ , the update equation becomes simply 

 

1

(1 )

(1 ) (1 )(1 )
t

t
t t

a

a b

αα
α α+

−=
− + − −

. 

 

Under these conditions, ifa b= then 1t tα α+ =  and the initial proportions are maintained. Ifa b> then there 

are two fixed points in the system: 1α =  which is stable and 0α = which is unstable. Otherwise, there are 

the same two fixed points, but 1α = is unstable and 0α = is now stable. 

        For the Batch Error procedure, the following difference equation is obtained 

 

( ) 31 2
1 1 2 31 2 3

1 2 3 1 2

, ,
, , |

t

nn nK
n n n

n n n n n
p p pα +

      
  

  ≥
= ∑  

 

where 1 (1 )tp aα= − , 2 (1 )(1 )tp bα= − − , and 3 (1 )t tp a bα α=  + − . If 1b = then 2 0p = and 2n will always be 

zero, so 1 2Pr[ ] 1n n≥ = and 1α = is a stable fixed point. If 1 and 1b a≠ = then 1 0p = , so 

1 2 2Pr[ ] Pr[ 0]n n n≥ = =  and the update equation is reduced to 

 

[ ]1 1 (1 )(1 )
K

t t bα α+ = − − − . 
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Consequently, the fixed point 1α =  is stable only if
1

1b
K

> − , otherwise for smaller values ofb a different 

stable point arises in the open interval(0,1) . For most other choices ofa andb 1α = is stable, and there are 

two other fixed points1 2 and α α in the open interval(0,1), with 1 2α α< where 1α is stable and 2α is 

unstable. If the number of sample sentences approaches∞ , 1
1

n
p

K
→  and 2

2

n
p

K
→ . Accordingly, 1tα →  

if 1 2p p> , or rather if *(1 ) (1 )(1 )t ta bα α α α= − > = − − . Clearly, 1 and 0α α= = are both stable fixed 

points and
1

(1 ) (1 )

b

b a
α −=

− + −
is an unstable fixed point between them. 

        Finally, for the Cue-Based process, the dynamics are given by the difference equation 

 

( )1 ( ) (1 )i K i
t t t

K
i

K i K
p p

τ
α α α −

+  
≤ ≤

= −∑  

 

where 1( )p P C= . If 0p = then the only stable point in the system is0α = , as is also the case for small 

values ofp . A bifurcation occurs asp increases, creating two additional fixed points1 2 and α α , 

where 0α = is still stable, 1α is unstable, and2 1α α> is stable. If 1p =  then both 1 and 0α α= = are stable 

fixed points with one unstable fixed point between them. If the number of samples sentences 

approaches∞ , then t

k
p

K
α→ . If p τ< , then 0α = is the only fixed point in the system. Otherwise for 

all 00
p

τα≤ < , 0α = is stable, and for all 0 1
p

τ α< ≤ , 1α = is stable. 
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THE FINITE MODEL 

        In many respects the finite model that has been implemented is the same as the infinite model 

explored above. It is based on the same syntactic foundation. There are still only two languages in the 

system1, 1 2 and L L , that are in competition and may include subsets of sentences that are analyzable by 

both grammars. Also, the population is monolingual, and the generations are coincident, discrete and non-

migratory. Finally, the same three learning algorithms, the TLA, Batch-Error, and Cue-Based learners, 

have been included2. 

        There are three major enhancements in the finite model, whose inclusion is intended to create a more 

realistic context for examining the dynamics of language change: 

1. A finite population that exists within a contained space3 - It is quite obvious that this 

more closely resembles the situation of a real language learner in contrast to the infinite 

population model. In order to avoid problems at spatial boundaries, the surface on which 

the individuals reside is toroidal, so those at an edge still have a complete set of neighbors. 

2. The capacity to define a social network for each individual that determines the possible 

sources of primary linguistic data - In the infinite model, every member of the population 

was connected to each other and so the entire population influenced the dynamics of the 

system. However, in the finite model there is finer control of the population’s 

connectedness. While it is still possible to configure a completely connected population, it 

is also possible to explicitly delimit a neighborhood of individuals that are situated within a 

certain radius of each leaner. This allows the model to approximate the notion of real-world 

                                                
1 Adding the ability to include more languages to the system has been left for future development. 
2 The implementations of the Batch-Error and Cue-Based algorithms in Alingua are slight modifications of those considered in 
the infinite model analysis. In particular, they allow for the specification of the fixed probability for the Batch-Error process 
where the infinite model assumed a probability of 1, and the cue probabilities and thresholds for both languages under the Cue-
Based approach where the infinite model only considered the effects of the cue probability and threshold for one of the 
languages in the system. 
3 For display purposes, the maximum population size is 250,000 - a 500 x 500 square. This is more than sufficient for the 
present investigation. 
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neighborhoods, which many times constitute the main source of a learner’s training data. In 

addition, it is also possible to construct a completely randomized connection network, or to 

define a separate, possibly unique network for each learner. 

3. The ability to explicitly define the distribution of language speakers when setting the 

initial conditions of the system - This permits the investigation of the effects of different 

spatial distributions on the behavior of the system. 

        It is clear that these three improvements to the original infinite model produce a framework for 

studying the evolution of a system of competitive languages that more closely approximates the 

circumstances of language acquisition in the real world. Consequently, the software will serve as a useful 

tool in the search for viable theories of diachronic language change. 

 

RESULTS FROM THE FINITE MODEL 

        The stability regimes determined by the analysis of the three algorithms in the infinite model were 

examined in finite populations using the Alingua software package. A standard population of 10,000 

individuals was chosen in order to minimize the background variability due to population size1. Also, a 

maturation time of 128 sentences was used as it can be shown that this number of samples is sufficient to 

ensure a high probability that a learner will converge to the target language in a 3-parameter system2. 

There were two connection network topologies considered, complete and local (with a radius of 1), and 

three initial distributions of language speakers3: random, island, which is an elliptical cluster of similar 

language users, and split, which is a rectangular-shaped cluster that extends vertically across the entire 

                                                
1 Niyogi (2002) briefly discusses the effects of population size on the variability of the system. In particular, high levels of 
variance are observed in small populations – an effect familiar to population biologists studying genetic drift and conservation 
biologists examining the long-term viability of small populations. 
2 Obviously, this is more than sufficient for the current 1-parameter system. 
3 Presumably there would be a total of six combinations of distributions and networks included in the present analysis. 
However, a completely connected network results in the destruction of any initial distribution after a single generation and so 
there are only 4 combinations considered: random/complete, random/local, island/local and split/local. 
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population space. Finally, there are two recurring values in the analysis: the average population change per 

generation,
1

1
t tn

α α α
−

∆ = −∑ wheren is the number of realizations, and the average local variance per 

language which is an overall measure of the clustering of speakers of similar languages, with the average 

local variance of 
|

{ }

1
( , )

A L Lj iAj
A neighbors of A

n j

i A Anji
L d L L

L       = 

∈   

= ∑ , where jA is the agent at the currently selected 

location j , iL is the number of individuals in the population speaking languagei , andd is a distance 

measure giving the similarity between languages1. 

 

Triggering Learning Algorithm (TLA)  

        The first algorithm considered in the analysis was the TLA. Figures 4-6 show, ,tα α ∆  and average 

local variance for several simulations with 0.5a b= = . Analysis of the infinite model predicts 1
2tα = as a 

stable fixed node and we see that this serves as a good approximation for the finite case, under both 

connection settings (complete and local) and all initial distributions. While the quantitative outcome for 

each combination of network and distribution settings is similar, their qualitative behaviors are distinct. 

First, Figure 4 shows that constraining the PLD source to the local network reduces the overall variability 

in the system. Additionally, Figure 5 shows that local connections also serve to dampen the variability 

of α∆ , or the change between consecutive generations, suggesting a local predictor of the global 

variability. Also, the graphs of the island and split distributions show evidence of edge effects, where 

change in the system occurs at the edge of a language-speaking cluster. Initially, the variability in these 

systems is very low, with the island distribution showing greater variance and more rapid change due to 

                                                
1 Since the current system only includes two languages, and 1 2L L , ( , ) 11 2d L L  = . In future multi-lingual versions of Alingua, it 

will be possible to explicitly define similarities between languages. 
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the fact that a higher proportion of its population resides at the edge of the cluster as opposed to the split 

distribution. Eventually, however, changes at the edge filter into the cluster at which point the variability 

is similar to that in the randomly distributed, locally connected system. Finally, Figure 6 shows that a local 

network fosters clustering: the average local variance in the randomly distributed, completely connected 

population remains relatively constant, whereas that in the randomly distributed, locally connected system 

decreases rapidly during the first few generations (screenshots from ALingua revealing this process are 

shown in Figure 7). Conversely, the highly clustered nature of the island and split distributions decreases, 

or the average local variance increases, steadily over time, eventually reaching a level similar to that in the 

randomly distributed case, suggesting a maximum amount of clustering allowed under these parameter 

settings. 

        Analysis of the TLA witha b> shows a similar outcome1: the infinite model prediction serves as a 

good approximation of the quantitative outcome of the system, namely 0tα = , with the qualitative 

behavior differing depending on the nature of the connection network and the initial distribution. The 

trajectories of tα in Figure 8 show the positive effect that local connectivity has on the long-term viability 

of a population of at-risk language speakers. In particular, the time to 0tα =  in the randomly distributed, 

locally connected system is almost double that in the population of randomly distributed, completely 

connected individuals. Once again, local connectivity dampens the variability and magnitude of α∆  as 

shown in Figure 9, and the introduction of the local network has induced cluster formation (Figure 10) in 

the randomly distributed system, presumably leading to the increased length in time to extinction. Finally, 

the dynamics of the island and split distributions is strikingly different from that of the randomly 

distributed populations due to their highly clustered nature and the consequent slow filtration 

of 2L speakers into the1L community. 

                                                
1 The system is essentially symmetric, so the outcomes for thea b<  case are similar, with the numbers and effects reversed. 
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Batch-Error Learner 

        The next algorithm analyzed using Alingua was the Batch-Error learner. The infinite model analysis 

predicts 1tα =  as a stable fixed node if 1a = and
1

1
k

b > − , and this serves as a good approximation for the 

finite case. As seen with the TLA analysis, the quantitative outcome of the systems is the same, while the 

qualitative behaviors are distinct, though the differences in this case are less remarkable. Plots oftα and 

the average local variance are shown in Figure 11, where it can be seen that the constraint of a locally 

connected network effectively decreases the time to stability through a more rapid decrease in the local 

variance. More interestingly, it is possible for a locally connected system to surpass the stable fixed node, 

1tα < , even if 
1

1
k

b ≤ − , and go to 1tα =  due to the clustering effects of the local connections as seen in 

Figure 12. This behavior is only observed for ambiguous probabilities close to
1

1
k

− , so it is still the case 

that the predictions of the infinite model are good approximations for this combination of parameters. 

        Substantially different behavior is observed with the Batch-Error process when considering the 

stability of the system about*α , with the infinite model predicting the stability of 0tα =  for 0 *α α< , and 

1tα =  for 0 *α α> . Plots for 0 {0.15, 0.3,0.45}α =  , 0.5a b= =  and
1

* 2
α =  are given in Figure 131. For 

relatively small values of0α the infinite prediction holds and the quantitative outcome is the same for both 

the completely and locally connected populations. The qualitative behavior is different between them, 

however, with the clustering induced by the local network leading to an increased time to stability. 

As 0α approaches*α , the quantitative outcomes diverge with the completely connected system converging 

to the stable fixed point 0tα =  while the locally connected population obtains stability at 0tα  � . Once 

                                                
1 The Batch-Error based system is essentially symmetrical and the results for 0 *α α>  are similar to those presented, just 

simply inverted. 
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again, this is an effect of the clustering of individuals speaking the same language, and in particular a 

clustering into a stable shape. In fact, a split-style distribution is stable while an island-shaped distribution 

leads to an increase inα ; both of these behaviors can be easily understood by considering what happens at 

two neighboring locations on either side of an edge of the cluster. Individuals located at the edge of a split 

distribution will have a majority of similar-speaking neighbors, as will their dissimilar-speaking neighbor 

outside the cluster, and sincea b= andK  is sufficiently large there is a high probability that 1 2n n≥  and 

the next individual at that location will acquire the language of their predecessor. As for the island 

distribution, each individual on the internal side of the edge will either have a majority of similar speakers 

or equal numbers of similar and dissimilar ones, as will their outside neighbor. Consequently, there is a 

high probability that the individuals at either location will retain the current language, or that the outside 

neighbor will acquire the language of the cluster, with the latter outcome being due to the fact 

thata b= , K  is sufficiently large, and the fixed probability for ties is 1. Once the language at a cluster-

external location flips, the local change can lead to global amplification. So, if the clustering effects of the 

local network lead to the development of a split or island-style distribution1 from an initial random 

distribution, the system will become stable and significantly diverge from the predicted stability point. If 

we consider the local variance plots for the0 0.45α =  runs in Figure 14, this is effectively what is 

happening as the system rapidly produces dense clustering. The ALingua screenshots provided in Figure 

15 give an added visual representation of this process. 

 

Cue-Based Learner 

        The final algorithm considered in the analysis was the Cue-based learner. Once again, the predictions 

of the infinite model serve as good approximations for the finite system, with the locally connected 

                                                
1 In reality, the populations never settle on a perfect split or island distribution, but rather the edges fluctuate between relatively 
flat (split-style) and rounded (island-style) edges. 
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populations lagging slightly behind the completely connected system. This can be seen in Figures 16 and 

17 where the completely connected system has undergone the bifurcation at 0.151p =  while the locally 

connected system does not exhibit the additional fixed point, but does so whenp is increased to0.155. 

Unlike the previously considered algorithms, the locally connected populations employing the Cue-Based 

algorithm are sensitive to the distribution of the non-cue-controlled language in the system. In particular, 

there are no quantitative or qualitative changes in the system as long as the non-cue-driven language 

remains randomly distributed. However, if a cluster develops, this can lead to significant changes in the 

behavior of the system as can be seen in Figures 18 and 19 where an initial island composed of 0.005 

percent of the population, or 502L speakers, leads to the disappearance of the additional stable fixed node. 

 
CONCLUSIONS 

        Niyogi and Berwick (1995, 1997) and Niyogi (2002), working under the assumptions of infinite 

population size and complete network connectivity, showed that formalized dynamical systems analysis 

provides a valuable mechanism for the study of diachronic language change. We have seen that in all the 

cases considered above the predictions of stability based on the analysis of the infinite model serve as 

good approximations for the quantitative outcomes of completely connected populations in a finite space. 

However, the inclusion of a constraint on the source of PLD to a local radius of neighbors, or an explicit 

initial distribution of language speakers, can significantly affect both the qualitative and quantitative 

behavior of these systems. The most remarkable behaviors are observed in the Batch-Error based 

simulations where high levels of clustering are induced by the introduction of a local network and the 

possibility arises for a large divergence from the predicted stability regions. In addition, the instability of 

the Cue-Based system introduced by the inclusion of an extremely small cluster of non-cue-driven 

speakers differs greatly from the predictions of the infinite model. 
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        Ultimately, the Alingua software package has proven to be a valuable tool in the analysis of the 

dynamics of a two-language system with a finite population. Pragmatically, comparisons between the 

outcome of simulations and empirical results from historical linguistics will facilitate the search for 

satisfactory theories of diachronic language change. This has been left open as a possible direction for 

future research. Other possibilities for future work include the addition of multi-lingual support and the 

ability to explicitly define similarities between languages so that the calculation of the average local 

variance would continue to provide practical data. Also, as new learning hypothesis are introduced, or the 

existing ones are modified, their implementations could be added or modified accordingly.  

        As an unintended benefit, ALingua may also present a useful model for the study of language 

extinction, a topic that has provoked concern among linguists (Hale, 1992) and has recently received much 

attention. For example, Sutherland (2003) provides an interesting examination of the status of the world’s 

languages using the system designed for the classification of species extinction risk. The results suggest 

that a large number of languages are in danger of disappearing and that we are losing languages at rates 

even greater than those at which we are losing biological diversity. Presumably, simulations in ALingua 

can provide insight into the possible mechanisms behind language extinction, namely the effects of 

connectivity and distribution on long-term viability, and the means by which the present decline in 

diversity may be ameliorated or even countered. 

        Finally, and more abstractly, if the material and physical understanding of location implicit in the 

system is replaced with a socially and culturally defined conception of place as advocated by Johnstone 

(2004), and a Whorfian-style approach to language is adopted, the results obtained may be interpreted in 

terms of cultural transmission. In particular, the model may suggest how connectivity, local or otherwise, 

may give rise to global socio-cultural patterns and the outcomes of simulations may provide insight into 

benefits or detriments of our ever-increasing global village. 
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Figure 1 A simple grammar that produces syntactically well-formed sequences. 

 
 

                                                

Figure 2 A Finite State Automata that accepts strings from the binary alphabet containing an odd number of ones. Each circle 

is a state: the double-tailed arrow indicates the start state and the double circle is the final/accepting state. Arcs between the 

states define the transitions. 

 

 

 Language Grammar Machine 

Type 3 Regular Regular Finite State Automata 

Type 2 Context-Free Context-Free Pushdown Automata 

Type 1 Context-Sensitive Context-Sensitive Linear-Bounded Turing Machine 

Type 0 Recursively Enumerable Unrestricted Turing Machine 

 

Figure 3 The Chomsky Hierarchy shows equivalence classes of languages, grammars, and machines, and organizes them by complexity. 
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Figure 4: Graphs of tα over 1000 generations in a population of 10,000 individuals using the TLA algorithm, with 

0 0.5α = , 0.5a b= = , and 128K = . Notice the significant decrease in variability with the introduction of local network 

connections. Also, while one run in the random/local configuration is relatively divergent, there is less variation between 
generations than the completely connected system and the remaining trajectories are tightly clustered. 
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Figure 5: The average generational change oftα , α∆ , over 1000 generations in a population of 10,000 individuals using the 

TLA algorithm, with 0 0.5α = , 0.5a b= = , and 128K = . Notice that the largest variability between generations and greatest 

average change occurs in the random/complete system. Also, note the low initial values in both the island/local and split/local 
systems due to their highly clustered nature and edge effects. 
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Figure 6: The average local variance over 1000 generations in a population of 10,000 individuals using the TLA algorithm, 

with 0 0.5α = , 0.5a b= = , and 128K = . Notice that the local variance is essentially unchanged in the random/complete 

system, there is an immediate decrease and leveling in the random/local system, and that both the island/local and split/local 
systems start at extremely low levels and then increase to a level similar to that of the random/local system. 
 
 
 
 
 
 
 
 
 
 



 31

 
 
 
 
 
 
 
 

     
 

     
 

     
 

     
 

Figure 7: ALingua screenshots of the first 20 generations of a randomly distributed population of 10,000 individuals using the 

TLA algorithm, with 0 0.5α = , 0.5a b= = , and 128K = . Notice how the local network connections have induced significant 

clustering of the initially randomly distributed population 
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Figure 8: Graphs of tα over 500 generations in a population of 10,000 individuals using the TLA algorithm, with 0 0.5α = , 

0.125a = , 0.1b = , and 128K = . Notice the significant increase in long-term viability with the introduction of the local 
network connections, and the additional positive effects conferred by the island and split distributions. Also, note the infamous 
S-shaped curve of historical linguistics in the island and split distribution plots. 
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Figure 9: The average generational change oftα , α∆ , over 500 generations in a population of 10,000 individuals using the 

TLA algorithm, with 0 0.5α = , 0.125a = , 0.1b = , and 128K = . Notice that the magnitude and variability is initially greatest 

in the random/complete system, with each decreasing asα approaches 0. Also, note the initial magnitudes and trajectories of the 
island and split distributions: telltale signs of dense clustering and edge effects. 
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Figure 10: The average local variance over 500 generations in a population of 10,000 individuals using the TLA algorithm, 

with 0 0.5α = , 0.125a = , 0.1b = , and 128K = . Notice that the local variance rapidly approaches 1 in the random/complete 

system, there is an initial decrease and subsequent quasi-linear growth in the random/local population, and that both the 
island/local and split/local systems start at extremely low levels and then increase almost linearly, similar to the random/local 
system. 
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Figure 11: Graphs of tα (top) and the average local variance (bottom) over 250 generations in a population of 10,000 

individuals using the Batch-Error algorithm, with0 0α = , 1.0a = , 0.9925b = , and 128K = . Notice that the locally connected 

population reaches the stable fixed point 1tα = quicker than the completely connected one, and that local variance decreases 

faster in the locally connected system. 
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Figure 12: Graphs of tα (top) and the average local variance (bottom) over 250 generations in a population of 10,000 

individuals using the Batch-Error algorithm, with0 0α = , 1.0a = , 0.992b = , and 128K = . Notice that the completely 

connected population goes to the stable fixed point 1tα <  while the locally connected system surpasses the fixed point and 

goes to 1tα = . Since the maturation time is relatively high and fixed probability used to decide ties in number of sentences 

equals 1, the system remains at 1tα = rather than decreasing towards the stable fixed point. 
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Figure 13: Graphs of tα over 50 generations in a population of 10,000 individuals using the Batch-Error algorithm, with 

0.5a b= = , 128K = and 0 0.15α = (top), 0 0.3α = (middle) and 0 0.45α = (bottom). Notice the effects of local network-induced 

clustering, with quantitative outcomes eventually diverging radically as 0α approaches
1
2*α = . 
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Figure 14: Graphs of the average local variance over 50 generations in a population of 10,000 individuals using the Batch-

Error algorithm, with 0.5a b= = , 128K = and 0 0.45α = . Notice the marked difference between the completely and locally 

connected populations, with the locally connected system exhibiting an extremely high level of clustering within the first few 
generations, ultimately leading to stability. 
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Figure 15: ALingua screenshots of the first 20 generations of a randomly distributed population of 10,000 individuals using the 

Batch-Error algorithm, with 0 0.45α = , 0.5a b= = , and 128K = . Notice the rapid clustering and relative stability induced by 

the local network connections. 
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Figure 16: Graphs of tα over 100 generations in a population of 10,000 completely connected individuals using the Cue-Based 

algorithm, with 0.15p =  (left), 0.151p = (right), 0.1τ = , and 128K = .  Notice how a small increase inp has given rise to the 

development of an additional stable fixed point. 
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Figure 17: Graphs of tα over 100 generations in a population of 10,000 locally connected individuals using the Cue-Based 

algorithm, with 0.151p =  (left), 0.155p = (right), 0.1τ = , and 128K = . Notice how the graph of 0.151p = differs from that in 

the completely connected population (Figure 16, right). In particular, the bifurcation point has not been reached. However, an 
increase of0.004percent yields the expected additional stable fixed point. 
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Figure 18: Graph of tα over 100 generations in a population of 10,000 randomly distributed, locally connected individuals 

using the Cue-Based algorithm, with 0.18p = , 0.1τ = , and 128K = (left), and tα over 500 generations in a population of 

10,000 locally connected individuals using the Cue-Based algorithm, with 0 0.995α = , 0.18p = , 0.1τ = , and 128K = (right). 

The plot on the left shows that an initial population size 0.995α = should be stable, however the graph on the right shows that if 
the system is seeded with an island of non-cue-driven speakers the stability of the system is greatly effected. Also note the 
appearance of another S-shaped curve. 
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Figure 19: ALingua screenshots, taken every 10 generations, of the first 200 generations of a population of 10,000 locally 

connected individuals using the Cue-Based algorithm, with 0 0.995α = , 0.18p = , 0.1τ = , and 128K = , and with the initial 

0.005 of the non-cue-driven population distributed as an island cluster. Notice how the initial cluster expands over time. 

Eventually, the system converges to the stable fixed point 0tα = . 

 


