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INTRODUCTION

Taking cues from population biology and the intnieaxpressed by Lightfoot (1991), Niyogi and
Berwick (1995, 1997) introduced a formalized dynamical system®agipito the study of language
change based on theories of language acquisition, and deatedsow the behavior of an individual
learner effects the emergence of characteristith@global level. In particular, it was shown that any
combination of grammatical theory, learning algoritlamg sentence distribution gives rise to a dynamical
system which allows one to conduct linear stabilitgilgsis, generate phase plots, and discover chaotic
regimes. This process is demonstrated using varianite dfriggering Learning Algorithm (TLA)
proposed by Gibson and Wexler (1994). Niyogi (2002) extendsathierevork by adding analyses of two
additional algorithms: the Batch-Error and Cue-Based {fagh, 1999) learning algorithms, and shows
how different choices of maturation time and sent@mskiguity, or maturation time and cue probability
and threshold, generate a variety of dynamical maps.

However, this framework includes the followpr@blematic assumptions: population sizes are
infinite and learners receive input samples, or trgidiata, from the entire population. These have served
as the motivations for the present work that:

1. Presents a simulation software package, ALihguhich has been developed to model a
more realistic situation: finite population sizes wigtwork$ defining the source of

primary linguistic data (PLD).

2. Explores the effects of the constraints of fipicgulation size and local connection
networks on the evolution of a two-language, discrete-tigmamical system.

3. Considers the relationship between spatial distribatand the emergent behavior of the

dynamical system.

! ALingua can be downloaded at http://alingua.finitestate.n
2 Each network is essentially a social network definfrgagents with which a single language learner potintias
interactions, and in particular interactions in whileh learner is presented with linguistic input.



The results obtained by examining the behafitine finite system within the stability regimes
discovered in the infinite model suggest that the refolis the infinite model serve as good
approximations to the finite case when considering cetelyl connected populations. However, when the
source of PLD is constrained to within a small radiuthe learner the qualitative dynamics, and in some
cases the quantitative outcomes, of the system a&edf In addition, there are some situations in which
a non-random initial distribution of agents also affetie behavior of the system. In the TLA-based
simulations there is a decrease in the overall viityalvhen the connection network is localized and an
initial period of heightened stability when the inittadtribution is non-random, but the long-term
behavior is essentially unchanged. The Batch-Erraulations also reflect a variability reduction under a
localized PLD source with the long-term behavior beleagendent on the distribution of language
speakers. Finally, the simulations based on the CuedBdgerithm suggest reduced variability and also a
dependence on the distribution of agents. However, thevioe of the Cue-Based model is significantly
different than that observed with the TLA and BatcheEalgorithms. Contrary to the TLA and Batch-
Error models, the reduction in variability leads te@duction, rather than an increase, in the long-term
viability of the language under consideration and it ésdistribution of the non-cue-driven language that
affects the qualitative dynamics and quantitative outcoitiee system.

In essence, the ALingua software and its apeoging model embody the last half-century of work
in Computational Linguistics; from Chomsky’s pioneeringkvon Formal Languages in the 1950’s and
Gold’'s development of a Language Learnability criterith@é11960'’s, to the more recent work of the last
decade in both Statistical Learning Theory and the ajic of Dynamical Systems Analysis to the
study of language evolution. What follows immediately Igiaf introduction to each of these topics.

Next, a summary of the infinite model and the resuiis1fNiyogi (2002) are given. Then the particulars



of the finite model and the results obtained by examgiits behavior are specified. Finally, the

conclusions drawn from the present work are offeredgalath suggestions for further work.

FORMAL LANGUAGE THEORY !

The first step in defining language is the estailent of a finite alphabet of distinct symbgls
This alphabet can be any such set, for example tH8,4¢t.., 9}when considering decimal numbers, or
the set of ASCII characters when considering digitizadl tMany times it is useful to consider the binary
alphabet {0, 1}. A stringsof lengthk, s, is then simply a sequence constructed by conatierk
symbols from the chosen alphabet, and the set pbss$ible strings over the alphabet is denoted by

= Uzk . Subsequently, a languages defined as a subset of all possible stringg;ighal Y.

k=0
In the natural language setting, one oftamsiders the alphabet consisting of the set ghalhemes,
or perhaps the set of words in a language, or wdaaly , also known as the lexicon. A language can

then be defined, for example, as a set of sentermetructed using words from the vocabulary,

LOV™ = Jv*.

k>0
It is then possible to construct a gram@afor the (possibly infinite) languade such that|, =L,

which is a finité collection ofrewrite rules that define the set of well-formed expressiorthinlanguage.

These rules are strings that contain terminalsymbols from the alphabgt, and non-terminals that are

variables that can kexpanded to strings of terminals. Figure 1 shows an exarapke very simple

The following conventions have been used in this secthd those that followz is a languagés is a grammar is a Turing
MachineL ; is the language generated by gram@aand L(M) is the language accepted by Turing Machihe

2 |In fact, any alphabet can be represented in thebaiphabet by a process of enumeration.
% It is the finite nature of grammars that is of masgerest in the current context, as it seems reasetaimagine that a
language learner would hypothesize this structure ratherttie possibly infinite set of sentences of thgeblanguage.



grammar that generates well-formed senténdeshis grammarS is a speciadtart or sentence symbol,

theNP VP ,PP ,Noun Verb andPrep symbols are non-terminals, ante flies arrows , &ikdare

terminal symbols. It should be noted that while@gmar uniquely defines a language, there are

potentially infinitely many grammars that can genterthe same language. The trivial case woulddeclu

grammars that have additiorimmy rewrite rules that are a part of the grammar beitn@ver accessed.
Finally, there are various classes of alostmachine® that can be constructed that accept/parse the

strings of a given language where LM )= L. The simplest of these, an example of which isxshio

Figure 2, is the Finite State Automata (FSA). Fdyna is a 5-tuple(X, Q,q,, F,d) whereX is the input

alphabetQis a finite set of statesg), JQis the start stat&, [ Q is a set of final states, adds a

transition function mapping states and input sysibolstatesg9 Q X - Q. Next is the Pushdown

Automata (PDA) that is similar to the FSA but hasess to atack where it can store a potentially

unbounded amount of information. A PDA is a 7-tu@gr,” ,Q,q,,F ,0) wherd" is the stack

alphabet} 0T is the initial stack symbad,is a transition function mapping states, input syisiband

stack symbols to states and stack symdI€Q x ¥ x — Qx T, and the remaining parameters have the

same definitions as they do for the FSA. Last,Ttheng Machine has access to a read/write’tapd is a

O-tuple (,1,0,0,Q,9,.t,r ,0) wherd is the tape alphabet containipgas a subsef, I - is the left

end markerp O -2 is the blank symbol,[JQ is the accept state,[1Q is the reject staté,is a

! Notice that this is a purely syntactic approach tglege. That is, it is possible to generate well-formatesees from this
grammar that are not semantically correct or meaningbr example, while it can produce the phrase, “tiies flke arrows,”
which describes the passing of time, since both “tiamad “flies” can be either nouns or verbs, and “likeh ©e either a verb
or a preposition, it is also possible to interpretghease as referring to a particular type of flies tingdyearrows. Obviously,
there are other possible meaningless semantic intatjores, as well. The canonical example of a weltafled sequence that is
semantically ambiguous, attributable to Chomsky, idpftess, green ideas sleep furiously.”

2 The standard Turing Machine has an infinite tape, lmretare various well-known modifications to this comstion. One
particularly useful version is the Linear-Bounded Turing Mae which has a finite tape of lenddi, wherenis the size of the
input andk is a constant associated with the machine.



transition function mapping states and tape symtoodtates, tape symbols and direction (i.e. lefight),
0:QxI - Qxrx{L R, and the remaining parameters are defined as above

It can be shown that there is an equivaertationship between certain classes of langyages
grammars, and machines, such thatlL ; =L(M) ! Shown in Figure 3 is the hierarétigtroduced by
Chomsky (1956) that organizes these by increasidgraf complexity. In addition, each successive
language contains, as a proper subset, those ielow

Ever since the introduction of the hiergrdhere has been disagreement as to the placer
set of natural languages within it. The set of graically well-formed sentences of English that are
constructed using a center-embedding process csimiven to be non-regular, and so provides simple

evidence suggesting that . is not in the Type 3, or Regular category. Firspstruct the

setS, ., containing sentences of the foNR' VP', e.g. “The boy yawned,” “The boy the man scolded
yawned,” and so on. This set is demonstrably ngodee by application of the Pumping Lemma. That is,
if we assume tha, , , is regular, thefiin > 0 such that for any strirg= xyzOS, . , Where}s| >n, it

should also be the case thgtzO S, ., 0i >0, with|y|> 0andxy| <n. However, it is easy to see how any
choice for sub-string leads to an ill-formed string, 8),.,is not regular. Next, we observe

thatS, ;o = Ly 0 NPT VP . The selNP" VP is regular, so if we assume thaf,, is

regulars,, ., must also be regular (since regular languagesl@sedc:under intersection). However, we

have shown tha, ., is not regular, so by contradiction we see thatassumption that is regular

English
was false. In fact, it is not uncommon to placegéeof natural languages in the vicinity of the&y2, or

Context-Free category. An example of an argumetit@éaontrary is presented in Kornai (1985) which

! See Hopcroft and Ullman (1979) or Kozen (1997) for proofeese equivalences.
2 This is now known simply as the Chomsky Hierarchy.



places natural language string sets in the Type Begular category. As will be shown later, the

placement of natural languages within this hienai@s implications to their learnability.

LANGUAGE LEARNABILITY

Amazingly, children learn their native languageotigh a process of inductive inference; each child
is presented with primary linguistic data from eg& language and from these a language is
hypothesized. This feat is particularly impressieen considering that the learner is exposed togwily
positive examples and is never explicitly given thies of productioh Furthermore, Brown and Hanlon
(1970) discovered that learning proceeds with careection of ungrammatical utterantesd equally
likely fulfilment of both grammatical and ungramiical requests.

Abstractly, we can consider a languagenkrato simply be an effective procedure, or algonia |
that maps example sentences to a set of possiitehgsized grammakt, which for the present

purposes can be assumed to be equal the set of natural languages. If a sequendesehtences is

denoted bys, s,,...,S. ), Wheres 0", we can define the set of all possible sequentcéssentences

D* =(X")*. Furthermore, if the set of all such finite secpemniD = U D* ,A is then the partial

k>0
recursive functiod :D - H .

Gold (1967) developed a framework for iniggging language learnability - language iderdifion
in the limit. A language is defined as a set ahgs over a finite alphabet and a text for a laggua a

sequence of strings (in any order) from the languagh that each possible string of the languagersc

! It is interesting to note that these rules eludeghetter, as well. That is, there is never an explititerstanding of the
underlying grammar.
% The exception to this generalization is untrue statésnen



at least once. Within this context, a languageasnable if there exists a learning algorithm wiehen

presented with all texts of the langug@ways correctly identifies/converges to the ¢arg

Definition 1 Atarget language L islearnableif analgorithmA
st.Utexts t for L,Un st.0k>n, L, ,= L.

Additionally, Gold defines what it means for a slag languages to be learnable.

Definition 2 Aclassof languagesL islearnableif CLJL Lislearnable

Gold discovered that the set of all filiteguages is learnable from a text, but that stipiee-set$
are not. In fact, under this framework, the enfir®msky Hierarchy is unlearnabl&ome have
incorrectly interpreted this result to imply thhetset of natural languages is unlearnable. Howéver
correct interpretation is that the learnabilitynatural languages is dependent upon the set being
constrained. More poignantly, the conclusion canrmerstood as evidence of the existence of the
Universal Grammar (UG) proposed by Chomsky, or thatlearner has some form of innatgriori
knowledge that assists them in the language atiquigirocess.

Application of statistical learning thediapnik, 1998) relaxes the perfect learning comstsanf
Gold and allows for a high probability of corredéntification within an acceptable level of geneedion
errof®, ¢, providing a more plausible context for languageussition. As a further distinction, sentences

are drawn in i.i.d. fashion from a distributionthas support on the set of all languages; so, jposkive

! Since texts for a language daér, in the sense that they are constructed using origstallowable in the language being
considered, they contain only positive examples.

2 A set containing all finite languages and at leastiofigite language is known as a super-finite set.

% One might be tempted to think that the class of redateguages is learnable, however since this categotgiosrall finite
languages and also many infinite languages, it too is urdéke.

* This is referred to arobably Approximately Correct learning.



and negative examples are presented. In this framkgwa language is learnable if, in the limit, the
probability that the distanté&etween the hypothesized and target languagehis the desired

confidence interval goes to zero.

Definition 3 Atarget language L islearnableif [JanalgorithmA
st.0e>0,Prid (L, ,L)>€] - Oasn - o« ,wheren isthe number

of sample sentences and d isthe distance between the hypothesi zed
and target languages.

A family of languages is then learnable in the sagmese as above. Application of the Hoeffding bound
yields an estimation of a finite number of sentsraiéer whose presentation there is a high pratyabil
that the algorithm's guess is within arapproximation of the target. Interestingly, whités approach
effectively extends the class of learnable langsaj@ltimately affirms the same Gold-inspired

conclusion that learnability necessitates a coimgdaset of hypothesis languages.

LANGUAGE CHANGE

Language learning is decidedly imperfefct. were not, languages would be transmitted from
generation to generation without modification. Tikislearly not the case. Is it reasonable to abuje
that faulty language acquisition, or misconvergegoeld give rise to fluctuations in the linguistic
composition of a population over time?

Consider what might give rise to changthatindividual level. If both a grammatical the@nyd

learning algorithm have been fixed, there are esdigriwo possibilities, both of which can be seen

! If1, (s)is an indicator function defining membership of sentaicE in languagé, andP is a probability distribution
1

ony , thend(L,,L,) =z‘111(s)—1L2 (sjp(s)

10



obvious consequences of the statistical learnimjesth described above, where perfect convergence is
unnecessary and in which the number of sample rseggas intimately linked to the probability thhet
learner is within the required-approximation of the target language. First, silmeelearner is being
exposed to examples from the set of all languagds entirely possible that the learner will sequently
fail to adequately approximate the target languagd,may even converge to another, as the result of
being exposed to too many positive examples frdfardint languages. It also seems natural to draw an
association between the Hoeffding bound on the esumbsentences and the learner’'s maturation time,
the time after which a grammatical hypothesis bexosolidified, and thus expose a second possible
explanation for misconvergence. In particular, lé@ner has reached maturation, yet has not been
presented with a sufficient number of unambigd®asnple sentences, the learner will have not aedjair
language within the tolerable error level of theyéd.

Against this background of individual misgergence, it is easy to see how changes would be
reflected on the population level. Take the sintgiessible case: a homogenous population, i.eirone
which everybody speaks the same language. Duetionhibrent stochastic nature of the learning pces
it is possible for members of a new generatioreafriers to hypothesize a language other thantietta
and so there exists a non-zero probability thatinigelistic composition of the population will chg If
the members of a successive generation are theantesl with input primarily from those who have
earlier misconverged, they will either acquire thesv language, or even a completely different oneg
again due to the stochasticity in the system.dhthecomes obvious how behavior at the indiviceesll
gives rise to global change.

However, if imperfect learning is in fabetsource of variation, the disparity between #teo$

possible target languages and that actually aatjbye¢he learner can not be too great otherwiseethe

! In this context, the possible sources of the negatiaenples are many, including exposure to foreign speakensdiaidual
or an entire population), non-native speakers, or dvesetwith speech disorders.
2 An unambiguous sentence is one that can only be parsedded by a single grammar in the hypothesis set.
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would be a marked decrease in the linguistic cofueref the systemOn the contrary, there must be an
allowance for a sufficient amount of error to aaaofor the historically observed changes. So, veetkat
there is an intrinsic friction between languageusgition and language change, which predictablgidda

guestions regarding the exact nature of theirioglahip.

THE INFINITE MODEL

Niyogi and Berwick (1995, 1997) show exgliichow the triple(G A,P) of grammatical theory
(e.g. parameterization), learning algorithm, arighirsentence distribution naturally gives riseato
dynamical system. Analysis of the system providsght into explanations for how and why languages
evolve along certain trajectories across generationparticular, the framework fosters an undeditay
of how individual behavior leads to emergent, glaibaracteristics. This work is then continued in
Niyogi (2002) where the scope of considered legraigorithms is widened.

The model presented therein is infiniteize, with every member of the population being
connected” to each other, and embodies the simplest possibletion: a system of two
languaged,, andL % in competition. It is predicated on a syntdttioridview, where languages are
taken to be sets of well-formed sequences oveti@le constructed from a shared underlying alphabet
In addition, the languages are not necessarilgidisjit is possible for sentences to be ambigumds
belong to both, andL,. That is, there may be sentences that can bedoaydsoth grammars. The

population is also monolingual; each agent hypahesand after maturation maintains, only a single

grammar. Lastly, generations are coincident anctelis, with all new members of the population

! Nowak et al. (2001) cast this in terms of the evolutiba Universal Grammar and determineoherence threshold which
bounds the conditions under which grammatical communitcaao evolve.

2 Since the population is completely connected, any meoaepresent sample sentences.

% In a principles and parameters context, one could intettpese as two languages that differ with respect boglesbinary-
valued parameter, e.g. Pro-Drop or Verb-Se¢d) movement.

* This could easily be extended to a phonological contéxtrevthe lexicon is generated from a shared set of preme

12



maturing and being added at the same time, anld¢h&on of each individual is static; there is no
migratory movement in the system.
There are a handful of values that are tbgoired to completely encapsulate the dynamyctém.

The proportion ok, speakers is given lay, so at any time the state of the system can beided by, ,
which is the proportion df speakers at timt¢obviously, the proportion af, speakers ista,). Also, the
probability functiorf, gives the distribution of sentences olgrwhileP, is the equivalent for sentences

ofL,. Related to the probability functions, and of inms® import, are the parametals,Pl[Ll n Lz]

andb =P, [ L, N Ll] which give the probability with which andL, speakers produce ambiguous sentences,

respectively. The now familiar learning algorithf defines a mapping from sample sentences to the set
of possible language$l, L} , andK gives the number of sample sentences presentée tearner.

The first of the three analyzed algorithenhe Triggering Learning Algorithm (TLA) (Gibs@nd
Wexler, 1994), a memory-less, gradient ascentileguprocess that manipulates a set of paranfet&rs
slightly modified version of this algorithm is usedthis model since the class of hypothesis laggaa

contains only twol, andL, . Initially, the learner chooses one of the posdédahguages at random. Upon

receiving the first training datum, if the currdrypothesized language correctly parses/generates th
sample, it is retained and the next sample is p@Eoe However, if the learner cannot successfallgg
the sentence, they will change their hypothesthiéoother language available in the system. Furtbes,
the algorithm is not greedy. The sample sentencevsr reanalyzed using the newly posited language;
the flip is permanent and the next sample is aadiaccordingly.

The second algorithm considered is the lBEtcor Learner. In contrast to the memory-lescess

of the TLA, the Batch Error procedure waits unitiexample sentences have been presented and then

L All of the probability distributions, once set, araintained for the entire process.
2 In the Principles and Parameters tradition, this woatdespond to a set of binary-valued parameter settiragsiniquely
defines a language.

13



chooses the language that most reliably accountfidoobserved dataMore specifically, the learner
considers three subsets of their primary lingudtita: the unambiguous sentencels ¢, \ L), the
unambiguous sentenceslgfL,\L,), and the ambiguous sentendgsh L,). Ifn;, n,, andn,are the
number of sentences in these sets, respectively,the learner choosgsfn, >n,,L,ifn, >n,, or
eitherL, or L, with some fixed probability if, =n, .

The final algorithm included in the anadysi the Cue-Based Learner as described by Lightfoo
(1999). Using this method, the learner analyzesnd@ming data looking focues,; abstract structures
derived from the sample sentences that are takbe &muivalent to the parameters accessed in the TL
model. Each language in the target class is unjiglefined by a set of cues that are found embedded

subset of its unambiguous sentences, e.d. fire set of cueS, U L, \L,. A cue threshold for the target

language is then chosen, and if the proportioruesan the set of sample sentences is greatethban

threshold, the learner chooses the target.

RESULTS FROM THE INFINITE MODEL

For the TLA learner, the derived differemcgiation for a fixed number of finite sample saoés is

B+;(A— B)(1- A- B)¥
O'Hl = A+ B )

! The actual algorithm employed by a real language leanost likely lies somewhere between the memory-lassbatch
error procedures. While the computational cost of th& iBLextremely low, it suffers by not having recourseitevious
experience. As for the Batch Error learner, it hagsg to the entire history of training data, but laigh computational cost.

2 In the present implementationn'if: n2the learner choosdziwith probability 1.
® This approach assumes that the cues are located in @egragix clauses, and thus not deeply embedded in an wigeran

14



whereA=(1-a,)(1-b)andB = a,(1-a). Analysis of this equation yields a single stdixed point in the

closed intervdD,1] to which the system converges given any set tdliionditions. 1fa = bthe stable
fixed point occurs at, =% . Ifa>bstability occurs rather close ao=0and most of the population

speakd.,. Otherwise, the stable point of the system isectogr =1and the system will containspeakers

almost exclusively. If the number of sample sergésrapproaches, the update equation becomes simply

a. = a,(l-a)
" g(1-a)+(@1-a,)1-b)’

Under these conditions,af=bthena,,, = @, and the initial proportions are maintaineda ¥bthen there

are two fixed points in the system=1 which is stable ang = 0 which is unstable. Otherwise, there are
the same two fixed points, bmt=1is unstable and =0is now stable.

For the Batch Error procedure, the folloyvififference equation is obtained

g = Z ( N, n}:, n3) plnl p2ﬂ2 pan‘3

My, Ny, NgN2N,

wherep, =a,(1-a), p, =(1-a,)(1-b), andp, =a,a+ (1—a,)b. Ifb =1thenp, = 0 andn, will always be
zero, sd’r[n, 2 n,] =1landa =1is a stable fixed point. f#1 anda = thenp, =0, so

Pr[n, = n,] = Pr[n, = 0] and the update equation is reduced to
a,., =[1-1-a,)@-b)".

15



Consequently, the fixed poiat=1 is stable only ib >1—% , otherwise for smaller valueshoé different

stable point arises in the open intef@al). For most other choices @ndb a =1is stable, and there are

two other fixed pointg, anda,in the open intervdD,1), witha, < a,where g, is stable andx, is
n :
unstable. If the number of sample sentences apipesac % - p ade2 - p,. Accordingly,a, - 1

if p, > p,, or rather ifa =a,(1-a)>a,. = (1-a,)(1-b). Clearly, @ =1 anda = (are both stable fixed

points andr =1;b is an unstable fixed point between them.
(1-b)+(1-a)

Finally, for the Cue-Based process, theadyos are given by the difference equation

— K ifq_ K-i
au= 3 (1)raya-pa)

IN

wherep = B(C) . If p=0then the only stable point in the system 0, as is also the case for small
values ofp. A bifurcation occurs agincreases, creating two additional fixed pomtanda,,
whereg =0is still stableg; is unstable, and, > a,is stable. Ifpo =1 then botlr =1 anda = (are stable

fixed points with one unstable fixed point betwéleem. If the number of samples sentences

approaches , then% - pa,. If p<r, thena =0is the only fixed point in the system. Otherwise fo

allo<a, <1, a =0is stable, and for aﬁ<ao <1, a =1is stable.
p p

16



THE FINITE MODEL

In many respects the finite model that lheen implemented is the same as the infinite model
explored above. It is based on the same syntaxtindation. There are still only two languages @ th

system, L, andL,, that are in competition and may include subseseotences that are analyzable by

both grammars. Also, the population is monolingaat] the generations are coincident, discrete aned n
migratory. Finally, the same three learning aldwong, the TLA, Batch-Error, and Cue-Based learners,
have been includéd
There are three major enhancements inrtibe fmodel, whose inclusion is intended to createore

realistic context for examining the dynamics oflaage change:

1. A finite population that exists within a containgpac@- It is quite obvious that this

more closely resembles the situation of a realdagg learner in contrast to the infinite

population model. In order to avoid problems atigphoundaries, the surface on which

the individuals reside is toroidal, so those aedge still have a complete setnefghbors.

2. The capacity to define a social network for eiadividual that determines the possible

sources of primary linguistic data - In the infinihodel, every member of the population

wasconnected to each other and so the entire population infledrthe dynamics of the

system. However, in the finite model there is fioentrol of the population’s

connectedness. While it is still possible to canf@ga completely connected population, it

is also possible to explicitly delimitraighborhood of individuals that are situated within a

certain radius of each leaner. This allows the rtwdapproximate the notion of real-world

! Adding the ability to include more languages to the sy$tambeen left for future development.

% The implementations of the Batch-Error and Cue-Bakgtithms in Alingua are slight modifications of thosmsidered in
the infinite model analysis. In particular, they allfaw the specification of the fixed probability for tBatch-Error process
where the infinite model assumed a probability of 1, tweccue probabilities and thresholds for both languages tinel€ue-
Based approach where the infinite model only considére@ffects of the cue probability and threshold for airthe
languages in the system.

% For display purposes, the maximum population size is 250,000 -xaS@Dsquare. This is more than sufficient for the
present investigation.

17



neighborhoods, which many times constitute the maurce of a learner’s training data. In

addition, it is also possible to construct a conghjerandomized connection network, or to

define a separate, possibly unique network for ézanimer.

3. The ability to explicitly define the distributiasf language speakers when setting the

initial conditions of the system - This permits theestigation of the effects of different

spatial distributions on the behavior of the system

It is clear that these three improvemeantthé original infinite model produce a framewook f

studying the evolution of a system of competitaeguages that more closely approximates the
circumstances of language acquisition in the realdy Consequently, the software will serve asefuls

tool in the search for viable theories of diachcdanguage change.

RESULTS FROM THE FINITE MODEL

The stability regimes determined by thelyamaof the three algorithms in the infinite modedre
examined in finite populations using the Alingudtware package. A standard population of 10,000
individuals was chosen in order to minimize thekogound variability due to population sizé\lso, a
maturation time of 128 sentences was used as be&ahown that this number of samples is suffidient
ensure a high probability that a learner will cageeto the target language in a 3-parameter system
There were two connection network topologies cansid, complete and local (with a radius of 1), and
three initial distributions of language speakerandom, island, which is an elliptical clustersafilar

language users, and split, which is a rectanghlapad cluster that extends vertically across thieeen

! Niyogi (2002) briefly discusses the effects of populatiae sin the variability of the system. In particulaghlevels of
variance are observed in small populations — an efieciliair to population biologists studying genetic drift andservation
biologists examining the long-term viability of smptpulations.

2 Obviously, this is more than sufficient for the cutré-parameter system.

3 Presumably there would be a total of six combinataistributions and networks included in the present aigly
However, a completely connected network results irddstruction of any initial distribution after a singlengeation and so
there are only 4 combinations considered: random/complehdom/local, island/local and split/local.
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population space. Finally, there are two recumvalgies in the analysis: the average populationgdaer
. — 1 . .. .
generationAa =—Z‘at -a, 1‘ wherenis the number of realizations, and the averagd \@@ance per
n _

language which is an overall measure of the cligef speakers of similar languages, with the ager

local variance ot -1 > d(L

|Li | Ajlta; =4
AnEI{ neigI!1borsof Aj}

AL An)’ whereAj is the agent at the currently selected
]

locationj ,|Li | is the number of individuals in the population dpeg language, andd is a distance

measure giving the similarity between languages

Triggering Learning Algorithm (TLA)

The first algorithm considered in the asilyvas the TLA. Figures 4-6 shay Aa, and average

local variance for several simulations wath b = 0.5. Analysis of the infinite model predictg = % as a

stable fixed node and we see that this serveggas@ approximation for the finite case, under both
connection settings (complete and local) and #ithirdistributions. While the quantitative outcofrfiee
each combination of network and distribution sggirs similar, their qualitative behaviors areidedt
First, Figure 4 shows that constraining the PLDrseuo the local network reduces the overall vaitiab

in the system. Additionally, Figure 5 shows thatalbconnections also serve to dampen the vanabilit

of Aa, or the change between consecutive generatioggesting a local predictor of the global
variability. Also, the graphs of the island andtsgiktributions show evidence of edge effects, rehe
change in the system occurs at the edge of a lgegsj@eaking cluster. Initially, the variabilitytinese

systems is very low, with the island distributidro®/ing greater variance and more rapid changeaue t

! Since the current system only includes two Iangudqemsz , d(Ll, L2) =1. In future multi-lingual versions of Alingua, it
will be possible to explicitly define similarities beten languages.
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the fact that a higher proportion of its populatiesides at the edge of the cluster as opposduteplit
distribution. Eventually, however, changes at titigeefilter into the cluster at which point the adility
is similar to that in the randomly distributed, &llg connected system. Finally, Figure 6 shows éhiaical
network fosters clustering: the average local vagan the randomly distributed, completely conedct
population remains relatively constant, whereasiththe randomly distributed, locally connectedtsyn
decreases rapidly during the first few generat{gnseenshots from ALingua revealing this process ar
shown in Figure 7). Conversely, the highly clustienature of the island and split distributions @eses,
or the average local variance increases, steaehly time, eventually reaching a level similar tattim the
randomly distributed case, suggesting a maximunuainof clustering allowed under these parameter
settings.

Analysis of the TLA witl > bshows a similar outcorfiethe infinite model prediction serves as a

good approximation of the quantitative outcomehef$ystem, namedy =0, with the qualitative

behavior differing depending on the nature of thenection network and the initial distribution. The
trajectories ofa; in Figure 8 show the positive effect that localmectivity has on the long-term viability
of a population of at-risk language speakers. hiqdar, the time tay;, =0 in the randomly distributed,
locally connected system is almost double thathéngopulation of randomly distributed, completely
connected individuals. Once again, local conndgtd@mpens the variability and magnitudeE as
shown in Figure 9, and the introduction of the lowwork has induced cluster formation (Figure ih0O)
the randomly distributed system, presumably leatbnidne increased length in time to extinction.ayn
the dynamics of the island and split distributienstrikingly different from that of the randomly
distributed populations due to their highly clusténature and the consequent slow filtration

of L, speakers into thg community.

! The system is essentially symmetric, so the outsdorethea < b case are similar, with the numbers and effects seder
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Batch-Error Learner

The next algorithm analyzed using Alinguaswthe Batch-Error learner. The infinite model gsial
predictsy; =1 as a stable fixed nodeait=1andb >1—i, and this serves as a good approximation for the
finite case. As seen with the TLA analysis, therjiiaive outcome of the systems is the same, whde

qualitative behaviors are distinct, though theedéhces in this case are less remarkable. Plotsinfl

the average local variance are shown in Figurevhgre it can be seen that the constraint of aljocal
connected network effectively decreases the tingability through a more rapid decrease in thalloc

variance. More interestingly, it is possible fdpeally connected system to surpass the stabld fixele,

. 1 . . .
a; <1, even |fbsl—i, and go tar; =1 due to the clustering effects of the local conoestas seen in

Figure 12. This behavior is only observed for ambigs probabilities close I&i, so it is still the case

that the predictions of the infinite model are g@apgroximations for this combination of parameters.
Substantially different behavior is observath the Batch-Error process when considering the

stability of the system aboat , with the infinite model predicting the stabiltya; =0 for a, <a,, and
a; =1 for a, >a, . Plots forxr, ={0.15, 0.3,0.45, a=b=0.5 anda. =% are given in Figure £3For

relatively small values af, the infinite prediction holds and the quantitatougcome is the same for both

the completely and locally connected populatiorge Gualitative behavior is different between them,
however, with the clustering induced by the loaglvork leading to an increased time to stability.

Asa,approaches, , the quantitative outcomes diverge with the comefjeconnected system converging

to the stable fixed poiat, =0 while the locally connected population obtaind#itg at a; [ 0. Once

! The Batch-Error based system is essentially symeaétind the results for, >a, are similar to those presented, just
simply inverted.
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again, this is an effect of the clustering of indiials speaking the same language, and in pantiaula
clustering into a stable shape. In fact, a spfiliedistribution is stable while an island-shapedribution
leads to an increasean both of these behaviors can be easily underdbyamnsidering what happens at
two neighboring locations on either side of an eoligéhe cluster. Individuals located at the edga eplit
distribution will have a majority of similar-speakyi neighbors, as will their dissimilar-speakinggidior

outside the cluster, and siree bandK is sufficiently large there is a high probabilhat n, >n, and

the next individual at that location will acquiteetlanguage of their predecessor. As for the island
distribution, each individual on the internal safehe edge will either have a majority of sim#greakers
or equal numbers of similar and dissimilar onesyiigheir outside neighbor. Consequently, theya i
high probability that the individuals at either dion will retain the current language, or that tleside
neighbor will acquire the language of the clustéth the latter outcome being due to the fact
thata=Db, K is sufficiently large, and the fixed probabiligrfties is 1. Once the language at a cluster-
external location flips, the local change can lEadlobal amplification. So, if the clustering effe of the
local network lead to the development of a splistand-style distributiohfrom an initial random
distribution, the system will become stable andiS@antly diverge from the predicted stability pbilf

we consider the local variance plots forae= 0.45 runs in Figure 14, this is effectively what is

happening as the system rapidly produces denseighgs The ALingua screenshots provided in Figure

15 give an added visual representation of thisgse.c

Cue-Based Learner

The final algorithm considered in the asslyvas the Cue-based learner. Once again, thetoed

of the infinite model serve as good approximatifmmghe finite system, with the locally connected

! In reality, the populations never settle on a pedpit or island distribution, but rather the edges fluctbateveen relatively
flat (split-style) and rounded (island-style) edges.
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populationdagging slightly behind the completely connected systehis Tan be seen in Figures 16 and
17 where the completely connected system has uoderttpe bifurcation gt =0.151 while the locally
connected system does not exhibit the additioredlifpoint, but does so whers increased t0.15E.

Unlike the previously considered algorithms, thealty connected populations employing the Cue-Based
algorithm are sensitive to the distribution of tie;-cue-controlled language in the system. In @alr,
there are no quantitative or qualitative changdkernsystem as long as the non-cue-driven language
remains randomly distributed. However, if a clustevelops, this can lead to significant changéken
behavior of the system as can be seen in Figuresd 89 where an initial island composed of 0.005

percent of the population, or gspeakers, leads to the disappearance of the asdititable fixed node.

CONCLUSIONS

Niyogi and Berwick (1995, 1997) and Niy¢g002), working under the assumptions of infinite
population size and complete network connectighgwed that formalized dynamical systems analysis
provides a valuable mechanism for the study offol@uc language change. We have seen that ineall th
cases considered above the predictions of stabdgd on the analysis of the infinite model sasve
good approximations for the quantitative outconfesompletely connected populations in a finite gpac
However, the inclusion of a constraint on the sewtPLD to a local radius of neighbors, or an iexpl
initial distribution of language speakers, can ificantly affect both the qualitative and quaniitat
behavior of these systems. The most remarkablevioebare observed in the Batch-Error based
simulations where high levels of clustering areuiretl by the introduction of a local network and the
possibility arises for a large divergence fromphedicted stability regions. In addition, the irmliey of
the Cue-Based system introduced by the inclusianaxtremely small cluster of non-cue-driven

speakers differs greatly from the predictions ef itifinite model.
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Ultimately, the Alingua software packages paoven to be a valuable tool in the analysidef t
dynamics of a two-language system with a finiteydagion. Pragmatically, comparisons between the
outcome of simulations and empirical results frastdrical linguistics will facilitate the searchrfo
satisfactory theories of diachronic language champe has been left open as a possible direction f
future research. Other possibilities for future kvimclude the addition of multi-lingual support atik
ability to explicitly define similarities betweearlguages so that the calculation of the average: loc
variance would continue to provide practical d&tlao, as new learning hypothesis are introducedher
existing ones are modified, their implementatioosid be added or modified accordingly.

As an unintended benefit, ALingua may gisesent a useful model for the study of language
extinction, a topic that has provoked concern anlimggists (Hale, 1992) and has recently receivedhm
attention. For example, Sutherland (2003) provalesiteresting examination of the status of theldt®r
languages using the system designed for the atasisih of species extinction risk. The resultsgasy
that a large number of languages are in dangesappearing and that we are losing languagesed rat
even greater than those at which we are losingdicdl diversity. Presumably, simulations in ALirgu
can provide insight into the possible mechanisnnlbddanguage extinction, namely the effects of
connectivity and distribution on long-term vialyijiand the means by which the present decline in
diversity may be ameliorated or even countered.

Finally, and more abstractly, if the madkand physical understanding of location implicithe
system is replaced with a socially and culturadifirted conception of place as advocated by Johaston
(2004), and a Whorfian-style approach to languagelopted, the results obtained may be interpieted
terms of cultural transmission. In particular, thedel may suggest how connectivity, local or othsew
may give rise to global socio-cultural patterns gr@loutcomes of simulations may provide insigtd in

benefits or detriments of our ever-increasing dlotlage.
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FIGURES

S - NPVP|VP

NP — Noun NP | Noun PP | Noun

VP - Verb NP |Verb PP |Verb NP PP |Verb
PP - Prep NP

Noun — time| flies|arrows

Verb - time| flies|like

Prep - like

Figure 1 A simple grammar that produces syntactically well-fatraequences.

R
=>0—0
AN

Figure 2 A Finite State Automata that accepts strings frombihary alphabet containing an odd number of ones. Eiacle

is a state: the double-tailed arrow indicates the staté and the double circle is the final/accepting statcs between the

states define the transitions.

Language Grammar Machine
Type 3 Regular Regular Finite State Automata
Type 2 Context-Free Context-Free Pushdown Automata
Type 1 Context-Sensitive Context-Sensitive Linear-Bounded TuMiaghine
Type O Recursively Enumerable Unrestricted Turing Machine

Figure 3 The Chomsky Hierarchy shows equivalence classes of languggesnars, and machines, and organizes them by complexity.
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Figure 4: Graphs ofr; over 1000 generations in a population of 10,000 individuals usingltAealgorithm, with

a,=0.5,a=b=0.5, andKk =128. Notice the significant decrease in variability witte introduction of local network

connections. Also, while one run in the random/lacalfiguration is relatively divergent, there is lessation between
generations than the completely connected system aneithaining trajectories are tightly clustered.
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Figure 5: The average generational changetofA_a, over 1000 generations in a population of 10,000 individuals us@ng t

TLA algorithm, witha, =0.5,a=b = 0.5, andK =128. Notice that the largest variability between gerienstand greatest

average change occurs in the random/complete systen).n&le the low initial values in both the islanddband split/local
systems due to their highly clustered nature and edgeseffect
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Figure 6: The average local variance over 1000 generations ip@gi®mn of 10,000 individuals using the TLA algorithm,
witha, =0.5,a=b=0.5, andK =128. Notice that the local variance is essentially wamged in the random/complete

system, there is an immediate decrease and levelithg irandom/local system, and that both the island/la split/local
systems start at extremely low levels and then iseréaa level similar to that of the random/locaitem.
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Figure 7: ALingua screenshots of the first 20 generations aefralomly distributed population of 10,000 individuals using the
TLA algorithm, with a, = 0.5, a=b =0.5, andK =128. Notice how the local network connections have indwignificant
clustering of the initially randomly distributed population
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Figure 8: Graphs ofr; over 500 generations in a population of 10,000 individuals usingltAealgorithm, witha, = 0.5,

a=0.125, b=0.1, andK =128. Notice the significant increase in long-term vidypiwith the introduction of the local
network connections, and the additional positive effeatderred by the island and split distributions. Alswterthe infamous
S-shaped curve of historical linguistics in the island sglit distribution plots.
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Figure 9: The average generational changetofA_a, over 500 generations in a population of 10,000 individuals ukig t

TLA algorithm, witha, = 0.5, a=0.125, b =0.1, andK =128. Notice that the magnitude and variability is inityajreatest

in the random/complete system, with each decreasiagpproaches 0. Also, note the initial magnitudes and toajes of the
island and split distributions: telltale signs of densistelring and edge effects.
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Figure 10 The average local variance over 500 generations ipalgdtmn of 10,000 individuals using the TLA algorithm,
witha, =0.5, a=0.125, b=0.1, andK =128. Notice that the local variance rapidly approachestherrandom/complete

system, there is an initial decrease and subsequentlopezsi-growth in the random/local population, and that boe
island/local and split/local systems start at extrertolylevels and then increase almost linearly, ssimib the random/local
system.
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Figure 11 Graphs ofx; (top) and the average local variance (bottom) over 256rgéions in a population of 10,000
individuals using the Batch-Error algorithm, with =0, a=1.0, b =0.9925, andK =128. Notice that the locally connected

population reaches the stable fixed paigt=1quicker than the completely connected one, and thatVac&ince decreases
faster in the locally connected system.
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Figure 12 Graphs ofy; (top) and the average local variance (bottom) over 256rgéions in a population of 10,000
individuals using the Batch-Error algorithm, with =0, a=1.0, b =0.992, andK =128. Notice that the completely
connected population goes to the stable fixed pajnt 1 while the locally connected system surpasses the figgd and
goes toa; =1. Since the maturation time is relatively high anddixeobability used to decide ties in number of sentences

equals 1, the system remainsat= Lrather than decreasing towards the stable fixed point.
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Figure 13 Graphs ofy; over 50 generations in a population of 10,000 individuals usinBaheh-Error algorithm, with
a=b=0.5,K =128anda, = 0.15(top),a, = 0.3(middle) andr, = 0.45(bottom). Notice the effects of local network-induced

clustering, with quantitative outcomes eventually divergajcally asr, approaches, =5
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Figure 14 Graphs of the average local variance over 50 genpgsaitica population of 10,000 individuals using the Batch-
Error algorithm, witha =b = 0.5, K =128anda, = 0.45. Notice the marked difference between the completedylacally

connected populations, with the locally connected systambiting an extremely high level of clustering withire first few
generations, ultimately leading to stability.
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Figure 15: ALingua screenshots of the first 20 generations ef@omly distributed population of 10,000 individuals using the
Batch-Error algorithm, witlr, = 0.45, a=b = 0.5, andK =128. Notice the rapid clustering and relative stability inethby
the local network connections.
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Figure 16. Graphs ofy; over 100 generations in a population of 10,000 completely ctethgwividuals using the Cue-Based
algorithm, with p =0.15 (left), p = 0.151(right),r =0.1, andK =128. Notice how a small increasejirhas given rise to the
development of an additional stable fixed point.
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Figure 17. Graphs ofr; over 100 generations in a population of 10,000 locally coedentividuals using the Cue-Based
algorithm, with p = 0.151 (left), p = 0.155(right),r =0.1, andK =128. Notice how the graph qf =0.151differs from that in

the completely connected population (Figure 16, right). Itiqudar, the bifurcation point has not been reachedvever, an
increase 00.004percent yields the expected additional stable fixed point.
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Figure 18 Graph ofx; over 100 generations in a population of 10,000 randomly distdpldeally connected individuals
using the Cue-Based algorithm, with=0.18,7 = 0.1, andK =128(left), and a; over 500 generations in a population of

10,000 locally connected individuals using the Cue-Based alguritlith o, =0.995, p =0.18,7 =0.1, andK =128(right).

The plot on the left shows that an initial populatictes =0.995should be stable, however the graph on the right shawsft
the system is seeded with an island of non-cue-driveskep@the stability of the system is greatly effecéddo note the
appearance of another S-shaped curve.
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Figure 19 ALingua screenshots, taken every 10 generations, dirth@00 generations of a population of 10,000 locally
connected individuals using the Cue-Based algorithm, wjtk0.995, p = 0.18,7 =0.1, andK =128, and with the initial
0.005 of the non-cue-driven population distributed as an iglustier. Notice how the initial cluster expands overetim
Eventually, the system converges to the stable fixeat ppi=0.
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